Solder joint reliability under realistic service conditions
نویسندگان
چکیده
The ultimate life of a microelectronics component is often limited by failure of a solder joint due to crack growth through the laminate under a contact pad (cratering), through the intermetallic bond to the pad, or through the solder itself. Whatever the failure mode proper assessments or even relative comparisons of life in service are not possible based on accelerated testing with fixed amplitudes, or random vibration testing, alone. Effects of thermal cycling enhanced precipitate coarsening on the deformation properties can be accounted for by microstructurally adaptive constitutive relations, but separate effects on the rate of recrystallization lead to a break-down in common damage accumulation laws such as Miner’s rule. Isothermal cycling of individual solder joints revealed additional effects of amplitude variations on the deformation properties that cannot currently be accounted for directly. We propose a practical modification to Miner’s rule for solder failure to circumvent this problem. Testing of individual solder pads, eliminating effects of the solder properties, still showed variations in cycling amplitude to systematically reduce subsequent acceleration factors for solder pad cratering. General trends, anticipated consequences and remaining research needs are discussed. 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Numerical analysis of thermo-mechanical behavior of indium micro-joint at cryogenic temperatures
Microelectronic packaging plays an important role in cryogenic engineering; in particular, a solder joint as interconnection, which offers a mechanical, thermal and electrical support, undergoes much larger and harsher thermal changes during its service compared with conventional customer electronic products. The impact of thermo-mechanical properties of such solder joints under cryogenic servi...
متن کاملFailure mechanism of FBGA solder joints in memory module subjected to harmonic excitation
This paper investigates the failure mechanism of Fine-pitch Ball Grid Array (FBGA) solder joints of memory modules due to harmonic excitation by the experiments and the finite element method. A finite element model of the memory module was developed, and the natural frequencies and modes were calculated and verified by experimental modal testing. Modal damping ratios are also obtained and used ...
متن کاملReliability Estimation of Solder Joints Under Thermal Fatigue with Varying Parameters by using FORM and MCS
One of major reasons of failure of solder joints is known as the thermal fatigue. Also, The failure of the solder joints under the thermal fatigue loading is influenced by varying boundary conditions such as the material of solder joint, the materials of substrates(related the difference in CTE), the height of solder, the Distance of the solder joint from the Neutral Point (DNP), the temperatur...
متن کاملImproved reliability of copper-cored solder joints under a harsh thermal cycling condition
This study simulated the performance of Cu-cored solder joints in microelectronic components subjected to the extreme thermal cycling conditions often encountered in the automobile industry by comparing the thermal cycling behavior of Cu-cored solder joints containing two different coating layers of Sn– 3.0Ag and Sn–1.0In with that of a baseline Sn–3.0Ag–0.5Cu solder joint under a severe temper...
متن کاملReliability Assessment of Preloaded Solder Joint Under Thermal Cycling
The ever increasing power density in modern semiconductor devices requires heat dissipation solution such as heat sink to remove heat away from the device. A compressive loading is usually applied to reduce the interfacial thermal resistance between package and heat sink. In this paper, both experimental approaches and numerical modeling were employed to study the effect of compressive loading ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microelectronics Reliability
دوره 53 شماره
صفحات -
تاریخ انتشار 2013